If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-108x+84=0
a = 12; b = -108; c = +84;
Δ = b2-4ac
Δ = -1082-4·12·84
Δ = 7632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7632}=\sqrt{144*53}=\sqrt{144}*\sqrt{53}=12\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-12\sqrt{53}}{2*12}=\frac{108-12\sqrt{53}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+12\sqrt{53}}{2*12}=\frac{108+12\sqrt{53}}{24} $
| 7x+35=2x+4x+65 | | 5x-2(x+1)=19 | | 5x-2(x+1=19 | | 2h-21=17 | | -5(4•-2)=-2(3+6x) | | 5x+40=30 | | 8=3n/12=13 | | 3(x+3)-x=17 | | 96/b=22-b | | 5/(1-x)=15/(1+x) | | -3y+12=15 | | 8.1+2.3=5.1a-3.1 | | x/5+13=2 | | 10x+14=8x-18 | | 4+w=-1.9 | | 4-2y=-22 | | 11=-8y+5(y+4) | | x/5+11=1 | | x/5+12=3 | | F(x)=(3x+2)+G(x)=-5x=4 | | 3(4p-7)-3=2(6p-12) | | 6=r+2/3 | | -17=3+v | | 2/3m=24 | | 3/2+1/3x=2x | | 2(x-4)=2x-2+10 | | 5x=6x-42 | | 3(x+5)-2x=10 | | h2+5h–14=0 | | x/4.79=2 | | 5n+19=3n+33 | | 3=7h |